Resumnation at small x

Anna Stasto Penn State University

Obligatory small-x physicist plot: (x,Q) plane

Question: what is the range of applicability of standard collinear formalism with DGLAP evolution and the calculations with low x effects (including saturation)?

One possible answer: it depends on the process

Another answer: it depends on the accuracy of calculation in both cases. Is it possible to extend the region of validity of any of these approaches through the resummation?

High energy limit

$$\sqrt{s} \to \infty, x \to 0$$

Energy much larger than any other scale in the process

At small x there are large logs. Splitting function:

$$xP_{gg} \sim \alpha_s^n \ln^{n-1}(1/x)$$

At high energy, or small x we can have:

$$\alpha_S \ln 1/x \sim 1$$

Need to resum them as well to all orders:

$$(\alpha_S \ln 1/x)^n$$

Any fixed order here would not be sufficient, potentially very large corrections.

Many soft gluon emissions in small x limit

Cascade of the n soft gluons

Strong ordering (in longitudinal momenta)

$$p^{+} \gg p_{1}^{+} \gg p_{2}^{+} \gg \cdots \gg p_{n}^{+} \gg k^{+}$$

Note: transverse momenta are not ordered

$$\frac{\alpha_s N_c}{\pi} \int_{k^+}^{p^+} \frac{dp_1^+}{p_1^+} = \frac{\alpha_s N_c}{\pi} \ln \frac{1}{x}$$
 Large logarithm

Nested logarithmic integrals

$$\left(\frac{\alpha_s N_c}{\pi} \ln \frac{1}{x}\right)^n$$

Resummation of the gluon emissions performed by the equation

Evolution equation in longitudinal momenta

$$\frac{df_g(x, k_T^2)}{d \ln 1/x} = \frac{\alpha_s N_c}{\pi} \int d^2 k_T' \mathcal{K}(k_T, k_T') f_g(x, k_T')$$

Solution:

 $f_g(x,k_T) \sim x^{-\omega_P}$ $\omega_P = j-1 = rac{lpha_s N_c}{\pi} 4 \ln 2$ Leading exponent(spin) $\omega_P = j - 1 = rac{lpha_s N_c}{\pi} 4 \ln 2$ $\omega_P = j - 1 = rac{lpha_s N_c}{\pi} 4 \ln 2$

0.24

0.16

0.05

0.1

Rise too strong for the data!

Take higher order corrections.

V.Fadin,L.Lipatov, G.Camici,M.Ciafaloni

$$\alpha_s \mathcal{K}_0 + \alpha_s^2 \mathcal{K}_1 + \dots$$

Very large next-to-leading correction!

Problems with convergence.

relevant values of $lpha_s$

0.25

Why NLLx is so large in BFKL?

- Strong coupling constant is not a naturally small parameter in the Regge limit: $s \gg |t|, \Lambda_{QCD}^2$ but $\alpha_s(\mu^2), \ \mu^2 \neq s$
- Regge limit is inherently nonperturbative.
- Compare DGLAP (collinear approach): $Q^2 \gg \Lambda^2$ and $\alpha_s(Q^2) \ll 1$
- No momentum sum rule, since the evolution is local in x. In DGLAP: momentum sum rule satisfied at each order due to the initial assumption of the collinearity of the partons and the nonlocality of the evolution in x.
- Approximations in the phase space (multi-Regge kinematics, quasi multi-Regge kinematics, etc..) cannot be recovered by the (fixed number of) the higher orders of expansion in the coupling constant.

Resummation

$$\left(\frac{\alpha_s N_c}{\pi} \ln \frac{1}{x}\right)^n \qquad \text{energy}$$

$$\left(\frac{\alpha_s N_c}{\pi} \ln \frac{Q}{Q_0}\right)^n \text{ scale (related to transverse momentum)}$$

Mellin variables: $\gamma \leftrightarrow \ln k_T^2$

$$\omega \leftrightarrow \ln 1/x$$

Kernel in Mellin space

$$\chi(\gamma) = \int \frac{dk'^2}{k^2} K(k^2, k'^2) \left(\frac{k'^2}{k^2}\right)^{\gamma}$$

Anomalous dimension

$$\gamma(\omega) = \int dz P(z) z^{-\omega}$$

Resumnation

linear case

```
Anderson, Gustafson, Kharraziha, Samuelson Z. Phys. C71 (1996) 613

Kwiecinski, Martin, Sutton Z. Phys. C71 (1996) 585; Kwiecinski, Martin, AS Phys. Rev. D56 (1997) 3991

Salam JHEP 9807 (1998) 19; Ciafaloni, Colferai, Salam, AS Phys. Rev. D68 (2003) 114003

Altarelli, Ball, Forte Nucl. Phys. B575 (2000) 313; Bonvini, Marzani, Perano Eur. Phys. J C76 (2016) 597.

Thorne Phys. Rev. D64 (2001) 074005

Sabio-Vera Nucl. Phys. B722 (2005) 65.

Brodsky, Fadin, Kim, Lipatov, Pivovarov JETP Lett. 70 (1999) 155.
```

nonlinear case

selected literature...

```
Motyka, AS Phys. Rev. D79(2009) 085016;
Beuf Phys. Rev. D89(2014) 074039

lancu, Madrigal, Mueller, Soyez; Phys. Lett. B744 (2015) 293;
Ducloue, lancu, Mueller, Soyez; JHEP 04 (2019) 081;

Lappi, Mantysaari Phys. Rev. D93(2016) 094004
```

General setup

Ciafaloni, Colferai. Salam, AS

- Kinematical constraint.
- DGLAP splitting function at LO and NLO.
- NLLx BFKL with suitable subtraction of terms included above.
- Momentum sum rule.
- Running coupling.
- Calculations done in momentum space, even though Mellin space used as a guidance.

LLx + NLLx

Representation of the kernel

$$\mathcal{K} = \sum_{n=0}^{\infty} \bar{\alpha}_s^{n+1} \, \mathcal{K}_n \qquad \bar{\alpha}_s \equiv \frac{N_c \alpha_s}{\pi}$$

$$\bar{\alpha}_s \equiv \frac{N_c \alpha_s}{\pi}$$

Mellin variables: $\gamma \leftrightarrow \ln k_T^2$

$$\omega \leftrightarrow \ln 1/x$$

LLx kernel in Mellin space

$$\chi_0(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$

running coupling triple poles double poles

NLLx kernel in Mellin space

$$\chi_{1}(\gamma) = \frac{b}{2} \left[\chi_{0}^{2}(\gamma) + \chi_{0}'(\gamma) \right] - \frac{1}{4} \chi_{0}''(\gamma) - \frac{1}{4} \left(\frac{\pi}{\sin \pi \gamma} \right)^{2} \frac{\cos \pi \gamma}{3(1 - 2\gamma)} \left(11 + \frac{\gamma(1 - \gamma)}{(1 + 2\gamma)(3 - 2\gamma)} \right) + \left(\frac{67}{36} - \frac{\pi^{2}}{12} \right) \chi_{0}(\gamma) + \frac{3}{2} \zeta(3) + \frac{\pi^{3}}{4 \sin \pi \gamma} - \sum_{n=0}^{\infty} (-1)^{n} \left[\frac{\psi(n + 1 + \gamma) - \psi(1)}{(n + \gamma)^{2}} + \frac{\psi(n + 2 - \gamma) - \psi(1)}{(n + 1 - \gamma)^{2}} \right]$$

LLx + NLLx kernel

Kernel on imaginary axis

-1.0

$$\chi_0 + \overline{\alpha}_s \chi_1 \int_{-0.5}^{\alpha \left(\chi_0\left(\frac{1}{2}+iv\right)+\alpha\chi_1\left(\frac{1}{2}+iv\right)\right)} \int_{-0.5}^{0.5} \int_{-1.0}^{0.5} \int_{-1.0}$$

Two saddle points on complex plane at higher order: oscillating cross section

Collinear poles

$$\chi_1^{\text{coll}}(\gamma) = -\frac{1}{2\gamma^3} - \frac{1}{2(1-\gamma)^3} + \frac{A_1(0) - b}{\gamma^2} + \frac{A_1(0) - b}{(1-\gamma)^2}$$

double and triple poles of the NLL part

LO DGLAP anomalous dimension

$$\gamma_{gg}^{(0)}(\omega) = \frac{\bar{\alpha}_s}{\omega} + \bar{\alpha}_s A_1(\omega) \qquad A_1(\omega) = -\frac{11}{12} + \mathcal{O}(\omega)$$

$$A_1(\omega) = -\frac{11}{12} + \mathcal{O}(\omega)$$

Difference of about 7% at most

Scale choices

HE factorization for the cross section

$$\sigma_{AB}(s;Q,Q_0) = \int \frac{d\omega}{2\pi i} \, \frac{d^2 \mathbf{k}}{\mathbf{k}^2} \, \frac{d^2 \mathbf{k}_0}{\mathbf{k}_0^2} \left(\frac{s}{QQ_0} \right)^{\omega} h_{\omega}^A(Q,\mathbf{k}) \, \mathcal{G}_{\omega}(\mathbf{k},\mathbf{k}_0) \, h_{\omega}^B(Q_0,\mathbf{k}_0)$$

BFKL equation for the gluon Green's function

$$\omega \mathcal{G}_{\omega}(\boldsymbol{k}, \boldsymbol{k}_0) = \delta^2(\boldsymbol{k} - \boldsymbol{k}_0) + \int \frac{d^2 \boldsymbol{k}'}{\pi} \, \mathcal{K}_{\omega}(\boldsymbol{k}, \boldsymbol{k}') \, \mathcal{G}_{\omega}(\boldsymbol{k}', \boldsymbol{k}_0)$$

Different possible scale choices:

symmetric (ex. two jets)

$$\nu_0 = kk_0$$

$$k \sim k_0$$

$$\nu_0 = k^2$$

$$k \gg k_0$$

$$\nu_0 = k_0^2$$

$$k \ll k_0$$

Similarity transformation

$$\mathcal{G}_{\omega} \to \left(\frac{k_{>}}{k_{<}}\right)^{\omega} \mathcal{G}_{\omega}$$

$$\mathcal{K}_{\omega}(k,k') \to \mathcal{K}_{\omega}^{u}(k,k') = \mathcal{K}_{\omega}(k,k') \left(\frac{k}{k'}\right)^{\omega}, \qquad \nu_0 = k^2,$$

$$\mathcal{K}_{\omega}(k,k') \to \mathcal{K}_{\omega}^{l}(k,k') = \mathcal{K}_{\omega}(k,k') \left(\frac{k'}{k}\right)^{\omega}, \qquad \nu_0 = k'^2,$$

Shift of poles

Shift of poles (symmetric case)

$$\chi_n^{\omega}(\gamma) = \chi_{nL}^{\omega}(\gamma + \frac{\omega}{2}) + \chi_{nR}^{\omega}(1 - \gamma + \frac{\omega}{2})$$

LL case with shifts

$$\chi_0^{\omega} = 2\psi(1) - \psi(\gamma + \frac{\omega}{2}) - \psi(1 - \gamma + \frac{\omega}{2})$$

Shift of poles (symmetric case) reproduces highest poles up to NNLO in sYM (highest poles the same in QCD)

Exact result

$$\chi_1^{sYM} = -\frac{1}{2\gamma^3} - 1.79 + \mathcal{O}(\gamma) ,$$

$$\chi_2^{sYM} = \frac{1}{2\gamma^5} - \frac{\zeta(2)}{\gamma^3} - \frac{9\zeta(3)}{4\gamma^2} - \frac{29\zeta(4)}{8\gamma} + \mathcal{O}(1) .$$

From shifts

Gromov, Levkovich-Maslyuk, Sizov; Velizhanin;
$$\chi_1(\gamma) = -\frac{1}{2\gamma^3} - \frac{0}{\gamma^2} + \dots$$

$$\chi_2(\gamma) = \frac{1}{2\gamma^5} - \frac{0}{\gamma^4} + \dots$$

Highest poles reproduced, lack of next-to-highest poles.

Kinematical constraint

Shifts are equivalent to the kinematical constraints imposed on the transverse momenta in the ladder

Ciafaloni Kwiecinski, Martin, Sutton; Anderson, Gustafson, Kharazziha, Samuelson

$$k = (k^+, k^-, \mathbf{k}_T)$$

$$k^2 = k^+ k^- - k_T^2$$

Virtualities dominated by transverse components

$$|k^2| \simeq k_T^2$$

Kinematical constraint

$$k_T^{\prime 2} < \frac{k_T^2}{z}$$

Leads to the shift of the poles in the kernel

Resummed kernel

$$\chi_0^{\omega} = 2\psi(1) - \psi(\gamma + \frac{\omega}{2}) - \psi(1 - \gamma + \frac{\omega}{2})$$

$$\chi_{\rm c}^{\omega}(\gamma) = \frac{A_1(\omega)}{\gamma + \frac{\omega}{2}} + \frac{A_1(\omega)}{1 - \gamma + \frac{\omega}{2}},$$

$$\tilde{\chi}_{1}(\gamma) = \chi_{1}(\gamma) - \chi_{0}^{0}(\gamma)[\chi_{0}^{1}(\gamma) + \chi_{c}^{0}(\gamma)] - \chi_{0}^{\text{run}}(\gamma)$$

$$= \chi_{1}(\gamma) + \frac{1}{2}\chi_{0}(\gamma)\frac{\pi^{2}}{\sin^{2}(\pi\gamma)} - \chi_{0}(\gamma)\frac{A_{1}(0)}{\gamma(1-\gamma)} + \frac{b}{2}(\chi_{0}' + \chi_{0}^{2})$$

Additional subtraction needed to satisfy the momentum sum rule. Most of the calculations are actually done in momentum space

Frozen coupling features

$$\bar{\alpha}_s \chi_\omega(\gamma, \bar{\alpha}_s) = \bar{\alpha}_s(\chi_0^\omega + \omega \chi_c^\omega) + \bar{\alpha}_s^2 \tilde{\chi}_1^\omega$$

Effective characteristic function: $\omega = \bar{\alpha}_s \chi_{\text{eff}}^{(0)}(\gamma, \bar{\alpha}_s)$

$$\omega = \bar{\alpha}_s \chi_{\text{eff}}^{(0)}(\gamma, \bar{\alpha}_s)$$

Fixed point (independent of the coupling). **Energy momentum** conservation

Gluon Green's function

Solution to the BFKL equation (gluon Green's function) Single channel: gluons only.

Large suppression as compared to LLx.

Two schemes, small differences.

Gluon Green's function

$$G(y; k, k + \delta k)$$

(Almost) equal scales
Small shift introduced to
mitigate the effects of the
numerical implementation
of the 'delta' fuction

Effects of resummation:

Lowering effective power

Onset of small x rise delayed

Dip or plateau

Gluon Green's function

Strong preasymptotic effects, which delay the onset of growth towards small x / large y

Dip or a plateau in y

Dip in gluon Green's function

Position of 'dip' in the gluon Green's function Inverse relation with strong coupling

$$y_{\rm dip}\overline{\alpha}_s(k) \simeq 0.7 - 0.8$$

Impact on two-scale processes

Born

BFKL

Virtual photon scattering with equal scales

Impact on two-scale processes

Transverse-transverse

Longitudinal-longitudinal

Energy dependence of BFKL vs flat behavior at large W Preasymptotic effects: resummed BFKL lower than Born calculation at low W. Observed previously.

Impact on two-scale processes

LLx calculation (with running coupling) always larger than Born Preasymptotic effects of resummation having large impact onto W behavior

Splitting function

Gluon-gluon splitting function has logarithmic enhancements at small x

$$xP_{gg}(x) = \sum_{n=1}^{\infty} a_n \alpha_s^n \ln^{n-1} \frac{1}{x} + \sum_{n=2}^{\infty} b_n \alpha_s^n \ln^{n-2} \frac{1}{x} + \dots \qquad 0.4$$

LLx

NLLx

First small x logarithmic term which belongs to NLLx hierarchy recovered at NNLO

$$-1.54\bar{\alpha}_s^3 \ln 1/x$$

Resummation at small x is inevitable.

Resummed splitting function

- Small x growth delayed to much smaller values of x (beyond HERA)
- Interesting feature: a dip seen at around $\,x\simeq 10^{-3}$
- Is this universal feature?
- Need to understand the origin of the dip in splitting function.

Understanding the structure of the splitting function

Perturbative terms in the splitting function

$$-1.54\bar{\alpha}_s^3 \ln 1/x + 0.401\bar{\alpha}_s^4 \ln^3 1/x$$

There is a minimum when

$$\alpha_s \ln^2 \frac{1}{x} \sim 1 \longrightarrow \ln \frac{1}{x} \sim \frac{1}{\sqrt{\alpha_s}}$$

This is valid at small coupling. For larger values another regime

$$\ln \frac{1}{x_{\min}} \simeq \frac{3}{2\omega(\alpha_s)}$$

In general: dip comes from the interplay between NNLO and the resummation.

Resummed splitting function

Ball, Bertoni, Bonvini, Marzani, Rojo, Rottoli;

Dip in the splitting function visible in other resummation approaches

Small x resummation and HERA data

Ball, Bertoni, Bonvini, Marzani, Rojo, Rottoli

- Perform fits to data with the cut on small x/small Q² region
- Observe the variation or lack of variation in χ^2

NNPDF3.1sx, HERA NC inclusive data

- χ2 changes for DGLAP at NNLO when more small x data are included
- NNLO+NNLLx gives best description
- Interestingly NLO and NLO+NLLx do not differ by a lot (flat splitting function at NLO?)

Small x resummation: future colliders

- Perform extrapolation of the calculations to the higher energy range (smaller x).
- Simulations with and without the resummation

Compared with the pseudodata

Ball,Bertone,Bonvini, Marzani,Rojo,Rottoli

- Structure function in the LHeC/FCC-eh range can discriminate between different scenarios
- Longitudinal structure function particularly sensitive to the resummation vs fixed order
- EIC: lower energy, so likely in preasymptotic regime, but can measure longitudinal structure function with precision

Impact of resummation on future machines

Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli

- Perform fits and extraction of PDFs using HERA data supplemented by pseudodata from LHeC+FCC-eh colliders
- Pseudodata restrict the uncertainties in PDFs
- Large differences in the extrapolation of the PDFs towards small x with and without the resummation

Important consequences for the LHeC and FCC-eh: large differences!

Summary and outlook

- Resummation schemes at low x based on collinear improvements: kinematical effects, matching to DGLAP
- Stability of the results demonstrated for scale changes and model changes.
- Characteristic features: reduced Pomeron intercept and small x growth delayed by several units of rapidity.
- Preasymptotic effects: dip of the splitting function and dip/plateau in the Green's function.
- Impact on saturation: lowering the saturation scale.
- EIC: kinematic range where strong preasymptotic effects present. Still, increased luminosity and possibility of precision F_L measurement can help. Other colliders (like LHeC/FCC-eh): very important
- Needed: resummation of impact factors, off shell matrix elements for other processes

Backup

Resummed kernel in x,kT

$$\int_{x}^{1} \frac{dz}{z} \int dk'^{2} \tilde{\mathcal{K}}(z; k, k') f(\frac{x}{z}, k')$$

$$= \int_{x}^{1} \frac{dz}{z} \int dk'^{2} \left[\bar{\alpha}_{s}(\boldsymbol{q}^{2}) K_{0}^{\text{kc}}(z; \boldsymbol{k}, \boldsymbol{k}') + \bar{\alpha}_{s}(k_{>}^{2}) K_{c}^{\text{kc}}(z; k, k') + \bar{\alpha}_{s}^{2}(k_{>}^{2}) \tilde{K}_{1}(k, k') \right] f(\frac{x}{z}, k')$$

LL BFKL with consistency constraint

$$\int_{x}^{1} \frac{dz}{z} \int dk'^{2} \left[\bar{\alpha}_{s}(\boldsymbol{q}^{2}) K_{0}^{\text{kc}}(z; \boldsymbol{k}, \boldsymbol{k}') \right] f(\frac{x}{z}, k')$$

$$= \int_{x}^{1} \frac{dz}{z} \int \frac{d^{2}\boldsymbol{q}}{\pi \boldsymbol{q}^{2}} \, \bar{\alpha}_{s}(\boldsymbol{q}^{2}) \left[f(\frac{x}{z}, |\boldsymbol{k} + \boldsymbol{q}|) \Theta(\frac{k}{z} - k') \Theta(k' - kz) - \Theta(k - q) f(\frac{x}{z}, k) \right]$$

non-singular DGLAP with consistency constraint

$$\int_{x}^{1} \frac{dz}{z} \int dk'^{2} \,\bar{\alpha}_{s}(k_{>}^{2}) K_{c}^{kc}(z; k, k') f(\frac{x}{z}, k')
= \int_{x}^{1} \frac{dz}{z} \int_{(kz)^{2}}^{k^{2}} \frac{dk'^{2}}{k^{2}} \,\bar{\alpha}_{s}(k^{2}) z \frac{k}{k'} \tilde{P}_{gg}(z \frac{k}{k'}) f(\frac{x}{z}, k')
+ \int_{x}^{1} \frac{dz}{z} \int_{k^{2}}^{(k/z)^{2}} \frac{dk'^{2}}{k'^{2}} \,\bar{\alpha}_{s}(k'^{2}) z \frac{k'}{k} \tilde{P}_{gg}(z \frac{k'}{k}) f(\frac{x}{z}, k') ,$$

Resummed kernel in x,kT

NLL BFKL with subtractions

$$\begin{split} \int_{x}^{1} \frac{dz}{z} \int dk'^{2} \, \bar{\alpha}_{s}^{2}(k_{>}^{2}) \tilde{K}_{1}(k,k') f(\frac{x}{z},k') \\ &= \frac{1}{4} \int_{x}^{1} \frac{dz}{z} \int dk'^{2} \, \bar{\alpha}_{s}^{2}(k_{>}^{2}) \Big\{ \\ &\left(\frac{67}{9} - \frac{\pi^{2}}{3} \right) \frac{1}{|k'^{2} - k^{2}|} \left[f(\frac{x}{z},k'^{2}) - \frac{2k_{<}^{2}}{(k'^{2} + k^{2})} f(\frac{x}{z},k^{2}) \right] + \\ &\left[-\frac{1}{32} \left(\frac{2}{k'^{2}} + \frac{2}{k^{2}} + \left(\frac{1}{k'^{2}} - \frac{1}{k^{2}} \right) \log\left(\frac{k^{2}}{k'^{2}} \right) \right) + \frac{4 \text{Li}_{2} (1 - k_{<}^{2}/k_{>}^{2})}{|k'^{2} - k^{2}|} \right] \\ &- \left(3 + \left(\frac{3}{4} - \frac{(k'^{2} + k^{2})^{2}}{32k'^{2}k^{2}} \right) \right) \int_{0}^{\infty} \frac{dy}{k^{2} + y^{2}k'^{2}} \log \left| \frac{1 + y}{1 - y} \right| \\ &+ \frac{1}{k'^{2} + k^{2}} \left(\frac{\pi^{2}}{3} + 4 \text{Li}_{2}(\frac{k_{<}^{2}}{k_{>}^{2}}) \right) \left| f(\frac{x}{z}, k') \right| \\ &+ \frac{1}{4} 6 \zeta(3) \int_{x}^{1} \frac{dz}{z} \, \bar{\alpha}_{s}^{2}(k^{2}) f(\frac{x}{z}, k) \,. \end{split}$$